مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
Authors
abstract
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دیگر به منظور ارائهی پیشبینیهای خارج از نمونه به کار گرفته شده است.یافتههای این مطالعه حاکی از آن بوده است که اولاً، مدلهای شبکهی عصبی پویا در مقایسه با مدلهای شبکهی عصبی چند لایهی پیشخور، از عملکرد بهتری در پیشبینی خارج از نمونهی نرخ ارز،بر مبنای هر دو معیار محاسبهی خطای پیشبینی mseو rmse داشته است و ثانیاً، به کارگیری تکنیک تجزیهی موجک سبب بهبود نتایج پیشبینیهای مدلهای مذکور بر مبنای هر دو معیار مذکور گشته است. ثالثاً، در میان مدلهای مذکور، بهترین نتیجه متعلق به پیشبینیهای حاصل از مدلهای شبکهی عصبی پویای مبتنی بر دادههای تجزیه شده با تکنیک موجک بوده است. لذا، استفاده از این ترکیب مدلها را به عنوان یک ترکیب بهینه میتوان به محققان، تحلیلگران و تصمیمگیران پولی کشور، پیشنهاد نمود.
similar resources
بررسی جهش پولی نرخ ارز و پیش بینی آن با شبکه های عصبی مصنوعی در ایران
یکی از مباحث مهم در اقتصاد کلان، رابطه بین شوکهای پولی و نوسانات نرخ ارز در قالب تئوری جهش پولی نرخ ارز است. از آنجا که اقتصاد ایران طی سالهای بعد از انقلاب همواره در معرض گسترش پایه پولی قرار داشته است، لذا بررسی رابطه بین انبساطهای پولی و نوسانات نرخ ارز و متعاقباً نقش افزایش درجه شناورسازی نرخ ارز بر میزان افزایش این نوسان، موضوع و هدف اصلی مقاله حاضر را تشکیل میدهد. بر این اساس در بخش او...
full textپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
full textمقایسه توانایی پیش بینی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی- فازی انطباقی(ANFIS) و تبدیل موجک-عصبی: قیمت سبد نفت خام اوپک
پیش بینی قیمت نفت خام از مهم ترین موضوعات فرا روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل درگیر بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود داده های تاریخی مهم و محدودیت اطلاعات مرتبط با شاخص های موثر بر روند قیمت نفت، ...
full textبررسی ترکیب تبدیل های موجک و شبکه عصبی در پیش بینی جریان های سطحی تنگه هرمز
جریانهای سطحی اقیانوسی، نقش مهمی در انتقال گرما و تغییرات آب و هوایی دارد. ازاینرو، پیشبینی جریانهای دریایی از اهمیت بسزایی در اقیانوسشناسی برخوردار است. در این پژوهش با بهکارگیری شبکهعصبی و تکنیک تبدیل موجک به پیشبینی جریانهای سطحی تنگههرمز پرداخته شده است. بدین منظور دادههای ثبتشده این حوزه از نوامبر سال 1992 تا دسامبر سال 2014 با گام زمانی 5 روزه از سایت ناسا تهیه و با بهکا...
full textپیش بینی نرخ ارز یورو به دلار با تکنیک شبکه عصبی مصنوعی
پیش بینی نرخ ارز به عنوان یک متغیر اقتصادی مهم مورد علاقه فعالان اقتصادی است. یکی از رویکردهای متداول در پیش بینی، رویکرد تکنیکال است که از رفتار گذشته نرخ ارز برای پیش بینی استفاده می کند. البته با توجه به ساختار آشوب گونه و غیر خطی بازارهای مالی، نمی توان با یک روش مشخص و ساده که از ترکیب ابزارهای مختلف تکنیکال بدست می آید به پیش بینی بازار پرداخت و نیاز به روش های پیچیده تری می باشد. در دهه ...
full textMy Resources
Save resource for easier access later
Journal title:
آینده پژوهی مدیریتPublisher: دانشگاه آزاد اسلامی - واحد علوم و تحقیقات تهران
ISSN 1605-2749
volume 25
issue شماره 1 (پیاپی 100) 2015
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023